Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.05.08.20095471

ABSTRACT

Background: COVID-19 disease, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has spread globally, and no proven treatments are available. Convalescent plasma therapy has been used with varying degrees of success to treat severe microbial infections for more than 100 years. Methods: Patients (n=25) with severe and/or life-threatening COVID-19 disease were enrolled at the Houston Methodist hospitals from March 28 to April 14, 2020. Patients were transfused with convalescent plasma obtained from donors with confirmed SARS-CoV-2 infection and had been symptom free for 14 days. The primary study outcome was safety, and the secondary outcome was clinical status at day 14 post-transfusion. Clinical improvement was assessed based on a modified World Health Organization 6-point ordinal scale and laboratory parameters. Viral genome sequencing was performed on donor and recipient strains. Results: At baseline, all patients were receiving supportive care, including anti-inflammatory and anti-viral treatments, and all patients were on oxygen support. At day 7 post-transfusion with convalescent plasma, nine patients had at least a 1-point improvement in clinical scale, and seven of those were discharged. By day 14 post-transfusion, 19 (76%) patients had at least a 1-point improvement in clinical status and 11 were discharged. No adverse events as a result of plasma transfusion were observed. The whole genome sequencing data did not identify a strain genotype-disease severity correlation. Conclusions: The data indicate that administration of convalescent plasma is a safe treatment option for those with severe COVID-19 disease. Randomized, controlled trials are needed to determine its efficacy.


Subject(s)
COVID-19 , Superinfection
2.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.05.01.072652

ABSTRACT

We sequenced the genomes of 320 SARS-CoV-2 strains from COVID-19 patients in metropolitan Houston, Texas, an ethnically diverse region with seven million residents. These genomes were from the viruses causing infections in the earliest recognized phase of the pandemic affecting Houston. Substantial viral genomic diversity was identified, which we interpret to mean that the virus was introduced into Houston many times independently by individuals who had traveled from different parts of the country and the world. The majority of viruses are apparent progeny of strains derived from Europe and Asia. We found no significant evidence of more virulent viral types, stressing the linkage between severe disease, underlying medical conditions, and perhaps host genetics. We discovered a signal of selection acting on the spike protein, the primary target of massive vaccine efforts worldwide. The data provide a critical resource for assessing virus evolution, the origin of new outbreaks, and the effect of host immune response. SignificanceCOVID-19, the disease caused by the SARS-CoV-2 virus, is a global pandemic. To better understand the first phase of virus spread in metropolitan Houston, Texas, we sequenced the genomes of 320 SARS-CoV-2 strains recovered from COVID-19 patients early in the Houston viral arc. We identified no evidence that a particular strain or its progeny causes more severe disease, underscoring the connection between severe disease, underlying health conditions, and host genetics. Some amino acid replacements in the spike protein suggest positive immune selection is at work in shaping variation in this protein. Our analysis traces the early molecular architecture of SARS-CoV-2 in Houston, and will help us to understand the origin and trajectory of future infection spikes.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL